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ABSTRACT 

Evapotranspiration (ET) is a key component of the hydrological cycle, encompassing 

evaporation processes from soil and water surfaces and plant transpiration (Sun et al., 2017). 

Accurate estimation of ET is vital for effective water resource management, agricultural 

planning, and environmental monitoring (Gowda et al., 2008). However, the complex 

interactions between land surface conditions, vegetation, and atmospheric factors make 

direct measurement of ET challenging, leading to the development of various estimation 

methods. Remote sensing has become a widely used approach for estimating ET over large 

areas because it provides spatially comprehensive data (Xiao et al., 2024). Methods like the 

Surface Energy Balance Algorithm for Land and the Surface Energy Balance System utilise 

satellite-derived thermal imagery and meteorological inputs to calculate ET by analysing the 

energy exchanges between the land surface and the atmosphere. These methods are 

advantageous for their broad spatial coverage, making them particularly useful for regional 

to global scale studies. However, they require careful calibration and validation, and their 

accuracy can be affected by the spatial resolution of the satellite data and the quality of 

meteorological inputs. In addition to remote sensing, several other ET estimation methods 

are commonly employed. 

The Penman-Monteith equation is one of the most widely accepted methods, integrating 

meteorological data—such as air temperature, humidity, wind speed, and solar 

radiation— with biophysical properties of vegetation to estimate ET. This method has been 

validated extensively, making it a standard reference in ET studies. Empirical methods like 

the Hargreaves-Samani equation provide simpler alternatives that require fewer data inputs, 

making them suitable for regions with limited meteorological information but with 

a trade-off in accuracy. Direct measurement techniques offer highly accurate ET data, 

including lysimeters and eddy covariance systems. Lysimeters measure water loss directly 

from a soil column, while eddy covariance systems assess the exchange of water vapour and 

energy between the surface and the atmosphere. Despite their precision, these methods are 

limited by high costs, maintenance requirements, and their applicability to small-scale, 

homogeneous areas (Howell, 2005). Choosing the appropriate ET estimation method 

depends on the scale of the study, data availability, and the specific application. Remote 

sensing and models like Penman-Monteith offer scalability and broad applicability, while  
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direct measurements provide precise data at localised scales. Integrating these methods can 

improve the reliability of ET estimates, enhance water resource management, and aid in 

climate adaptation efforts. 

Keywords: evapotranspiration, remote sensing, field methods 

 

 

INTRODUCTION 

One of the most significant ecosystem functions of greenery are its capacity to reduce the 

surrounding temperature (Zardo et al., 2017). The cooling rate is directly proportional to the 

evapotranspiration occurring at any given time (Allen et al., 1998). The rate of ET is 

contingent upon the current state of the vegetation and the conditions of its surroundings 

(Aram et al., 2019). Consequently, it is a highly variable process, and determining the actual 

value takes much work (Kirkham, 2014a). Evapotranspiration (ET) is a critical hydrological 

process encompassing the combined actions of evaporation from the soil surface and 

transpiration from plants or crops (Fig. 1). As a pivotal component of the surface, water, and 

atmospheric energy cycles, ET represents the transfer of liquid water to water vapour. 

Evaporation, the physical component, denotes the phase change of liquid water into vapour. 

In contrast, transpiration is a biological process wherein water evaporates from plants 

through stomata, primarily on leaf undersides. This transpired water, replenished by water 

absorbed from the soil via plant roots, moves through the plant in liquid form before 

vaporisation at the stomata (Allen et al., 1998, 1998; Kozlowski & Pallardy, 1997). 

ET is a key factor in several areas, such as water resource management (Volk et al., 2024), 

precision agriculture (Gonzalez et al., 2023), drought monitoring (Stoyanova et al., 2023), 

carbon cycling (von Randow et al., 2020) or soil moisture measurement (Dong et al., 2020). 

In most instances, these domains overlap, and, in general, ET can indicate the effective 

or ineffective functioning of ecosystems and is one of the main indicators of climate 

regulation (Millennium Ecosystem Assessment, 2005). Numerous methods have been 

developed to measure and estimate ET, encompassing both direct measurement techniques 

and indirect approaches. Each method has advantages and limitations, and the choice often 

depends on the spatial and temporal scales of interest, the availability of data, and the specific 

application. Remote sensing technologies have significantly advanced ET estimation by 

offering spatially extensive data over large areas. 

However, accurate estimation of ET can be challenging due to the need to distinguish 

between different concepts within the term. Potential (PET) and reference (ET0) 

evapotranspiration have been confused for several decades. Sometimes, they are not 

described as two separate processes and are referred to as PET altogether (Dinpashoh et al., 

2011; Mardikis et al., 2005). 

Reference evapotranspiration (ET0) is usually given in W/m2 or kJ/m2. It refers to ET from 

a reference area, which is normally described in the literature as a hypothetical grass area 

with sufficient water supply, a grass height of 0.12 m, a constant surface resistance of 70 s/m, 

and an albedo of 23 % (Allen et al., 1994). 

Potential Evapotranspiration (PET) describes the evapotranspiration rate if a sufficient 

water source is available. Unless the surface is always moist, PET should always reach lower 

values than Actual Evapotranspiration (AE). 

While PET and are similar (both refer to atmospherical and crop demands, additionally 

referring to abstract/ideal ET), the initial thoughts and concepts differ. As Xiang et al. (2020) 

pointed out, ET applications were originally used in hydrology before extending to various 

scientific fields. Agricultural applications aimed to calculate water requirements in crops and 
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their irrigation, for which PET could have been a better solution and often caused 

miscalculations. This was solved by introducing the concept of Actual Evapotranspiration. 

 

Fig. 1: Schema of evaporation and transpiration resulting in ET (Bates & Jackson, 

1980) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Actual Evapotranspiration (AE; [mm/day]) was scientifically defined by Thornthwaite in 

1948 (Stanhill, 2005; Thornthwaite, 1948). AE explains the real water and energy exchange 

between the oil surface and the atmosphere (Ochoa-Sánchez et al., 2019). Measurement of 

AE depends on the Crop Coefficient (Kc see Equation 1). allows derivating AE for specific 

surfaces or crops (Peacock & Hess, 2004). FAO Irrigation and Drainage Paper No. 24 

(Doorenbos, 1977) defines several crop growth stages for various climates. However, these 

values remain unchanged since they were derived and represent an average growth length. 

 

𝐴𝐸 = 𝐾𝑐 × 𝐸𝑇0   (1) 

 

Kc can further be split into Single Crop Coefficient and Dual Crop Coefficient. Single 

combines differences in soil evaporation and crop transpiration between the actual and 

reference surface. Dual separates the soil evaporation and crop transpiration. The Basal Crop 

Coefficient describes crop transpiration, while the Soil Water Coefficient (Ke) describes soil 

water evaporation (Savva & Frenken, 2002).  

 

Calculation of AE then changes into: 

𝐴𝐸 = (𝐾𝑐𝑏 + 𝐾𝑒) × 𝐸𝑇0   (2) 

 

Understanding the distinctions between ET0, PET, and AE is crucial for accurately 

estimating ET. Using ET0 and Kc, we can connect the theoretical concepts and actual 

water-usage. 
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FACTORS AFFECTING ET 

Several factors play a key role in the presence and effectiveness of ET. Allen et al. divide 

them into three main groups: atmosphere/weather, crop/soil and environmental conditions 

(1998). 

 

Weather conditions 

Weather or atmosphere conditions affecting ET are mainly sun radiation, air temperature, 

air humidity and wind speed. These conditions vary according to several influences, 

such as daytime, time of year or actual atmospheric conditions (cloud coverage). 

As air temperature increases, it can hold smaller amounts of water vapour, promoting 

evaporation. This warm air also profoundly influences plants. The increase in air temperature 

leads to more intense metabolic processes in plants, which in turn causes higher rates of 

transpiration, especially during periods of high air temperature. This is when plants start to 

show signs of water stress and shut down their transpiration processes (Hatfield & Prueger, 

2015). 

The movement of air molecules, which translates into wind speed, causes water vapour to 

be lost around the plant leaf, leading to more transpiration. However, it's important to note 

that strong winds can also cause significant damage to both plants and soil with their force, 

a factor that should be carefully considered. 

High relative humidity in the air lowers the effects of both evaporation and transpiration. 

Air particles saturated by humid air are less likely to accept additional humidity caused by 

evapotranspiration. 

Solar radiation is the source of energy for evapotranspiration. A higher rate of solar 

radiation (having a sunny day) promotes plant physiological processes (Campillo et al., 

2012). Solar radiation is also responsible for albedo, the rate of incoming and emitted solar 

radiation on a surface. Plants and crops with low albedo (vegetation with dark shades) can 

absorb more solar radiation and, therefore, produce more water vapour. 

 

Crop and soil conditions 

Crop/soil conditions can affect water retention caught in the plant. Specific crop type 

(ability to retain water during drought, depth of roots, leaf characteristics, etc.) and growth 

phase should be considered, especially when calculating ET over agricultural plants (Allen 

et al., 1998). 

Over time, vegetation has adapted to regular changes in climate. Physiological aspects of 

each vegetation type allow plants to survive in places with rough conditions. Specific 

vegetation can sustain long periods of drought (succulents), and other vegetation types 

(deciduous) shed their leaves due to seasonal changes, causing significantly lower to minimal 

ET. The potential green mass available for ET is quantified by the Leaf Area Index (LAI). 

LAI changes during the growth phase and with the leaf's immediate position (Kirkham, 

2014a). The larger the values of LAI, the larger the leaf area and the more potential mass for 

ET. The very structure of the plant and its adaptive mechanisms for survival influence the 

presence and efficiency of evapotranspiration. 

Soil is a critical factor in quality ET. Its moisture content is the deciding factor in the 

amount of water available for evaporation. The texture and general physiologic 

characteristics of the soil influence how much water can be held and the speed of drainage in 

the ground pores (Kirkham, 2014b). The presence of organic matter in the soil can help retain 

water during droughts. This highlights the urgency of water conservation, as the soil's 

moisture content directly impacts water availability for plants. 

 



Pohanková et al.: How to measure evapotranspiration in landscape-ecological studies? Overview of concepts and 

methodsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 
 

42 

External environment 

The last group of factors is connected to environmental conditions and the management of 

plants and crops and includes a wide variety of characteristics (irrigation, soil fertilization, 

soil composition, presence of diseases, etc.). 

Managing external factors can (especially in agriculture) lead to significant optimization of 

ET processes (Denager et al., 2020; Abiri et al., 2023; Dimitrijević, 2023). One of the main 

influences is the irrigation schedule. Using accurate and actual data can influence irrigation 

schedules and save water. Healthy soil is also important for keeping crops in optimal shape 

(and therefore to be able to run ET processes). Agricultural practices (such as improving soil 

retention, mulching, and fertilization) help maintain good conditions. 

 

 

ESTIMATING EVAPOTRANSPIRATION 

Estimating ET is essential for water resource management in many fields. However, 

quantifying ET is challenging due to the complex relationships between various 

environmental and biological factors. Over time, a number of methods for measurement have 

been developed. Each of these methods has distinct disadvantages, advantages and 

limitations, and the choice of method often depends on the specific conditions and 

measurement requirements (Ghiat et al., 2021; Yang et al., 2021). Direct measurement 

approaches, such as lysimeters or Flux Towers, offer the most accurate data but are limited to 

small, homogenous areas. This means that for richly diversified landscapes, urban 

environments or extensively large study areas, these methods are almost inapplicable (Amani 

& Shafizadeh-Moghadam, 2023). 

These measuring types include techniques that directly measure the amount of water lost 

by evapotranspiration from the soil surface and plants. However, these methods can be 

expensive to install and maintain and may need to be more easily scalable for large-scale 

studies. 

Therefore, indirect methods of determining evapotranspiration are more efficient for 

landscape studies (Raza et al., 2023; Rasheed et al., 2022; Raja et al., 2024). These methods 

are usually less accurate than direct methods, but they can cover large areas and 

capture/account for spatial variability. They are also inherently cheaper to operate, as there is 

no need to acquire several identical measuring devices.  

Indirect methods of measuring evapotranspiration use various models and calculations 

based on meteorological data and other factors.  

Empirical models utilize meteorological data like temperature, humidity, wind speed, and 

radiation to estimate ET (Allen et al., 2005; Valipour, 2014). The Penman-Monteith equation 

is a widely used example, offering a robust theoretical framework. However, empirical 

models often require calibration for specific locations and vegetation types, and their 

accuracy can be limited under non- ideal conditions (Ghiat et al., 2021). 

More complex approaches involve physical or combined models. These models use 

detailed information on plant physiology, soil, and atmospheric conditions to simulate the 

processes leading to ET. These models need extensive data inputs, limiting their widespread 

application (Subedi & Chávez, 2015; Xiao et al., 2023; Duhan et al., 2023) 

 

In-Situ Measuring (Direct Methods) 

Lysimeters 

One of the most commonly used, and remarkably precise, tools for direct ET measurement 

is the lysimeter. This instrument, with its high level of accuracy, allows the measurement of 
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water movement in the soil and the changes in the weight of the soil column, enabling an 

estimate of he amount of water that has evaporated and transpired.  

Lysimeters, versatile in their applications, fall into several categories. The two most 

common types are mentioned below. 

Weighing lysimeters are containers filled with water placed on a balance. The change in 

weight allows one to determine the water intake or output. These lysimeters are often used to 

measure ET or the water balance of plants (Akhavan et al., 2019). 

The device needs access to a block of vegetation, and its case, consisting of a culture vessel 

with plants, determines the weight of the soil block with plant cover over a period of time. If 

we know the amount of water supplied to the container by rainfall or irrigation, then the 

weight change is due to ET only.  

Drainage lysimeters measure the movement of water at the plant's roots in the soil. They 

are mainly used in agriculture or air pollution research. Water that flows through the soil 

remains in separate containers to take samples for chemical analysis. The change in the 

amount of water in these containers is also used for measurements (Nagler et al., 2005). 

⚫ Benefits and advantages: 

 Accuracy: Lysimeters provide very accurate measurements because they 

directly measure the amount of water lost through evapotranspiration 

 Condition control: They allow control over soil and plant conditions. 

⚫ Limitations and disadvantages: 

 Cost: They are expensive to install and maintain. 

 Site-Specific Results: Lysimeter results are often specific to the site and 

may not be easily transferable to other areas, underscoring the need for 

careful interpretation and application. 

 

Evaporimeters 

Devices are based on the principle of evaporation, either from the water surface or from 

a reference evaporating surface of given properties. Evaporation from a water surface is 

monitored in a container filled with water of a given surface area on the principle of 

measuring the change in water level (meteorological evaporimeters). The measurement of 

evaporation from a reference evaporating surface is based on the principle of evaporation 

from a porous material saturated with water of a given area (Pitche evaporimeter). They are 

relatively easy to use and provide a direct measurement but may need to be more accurate 

under different conditions. 

 

Eddy Covariance 

This method, known for its accuracy, measures variations in vertical wind speed and 

specific gravity of water vapor in the atmosphere. It is considered one of the most accurate 

methods, despite requiring complex and expensive equipment (Shivers et al., 2019). In 

horizontally homogeneous conditions of the atmosphere, the exchange of mass and heat 

energy happens only in the vertical direction (Burba & Anderson, 2010). The basics of 

estimation of Eddy Covariance (EC) is the measurement of changes in the concentration of 

individual gases and vertical movements of thermal air masses. 

Figure 2 shows a schematic of the operation of the individual eddies. Eddy 1, with its 

movement, propels the air particle at speed, while Eddy 2 propels the air particle at speed in 

the opposite direction. 
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Fig. 2: Schematic principle of turbulent eddies in the atmosphere. Adapted from 

(Burba & Anderson, 2010). 

 

⚫ Benefits and advantages: 

 Direct measurement: provides a direct measurement of the water 

exchange between the surface and the atmosphere 

 High temporal resolution: Allows for continuous real-time 

measurements. 

⚫ Limitations and disadvantages: 

 Technical difficulty: Requires complex and expensive equipment 

 Sensitivity to conditions: Results may be affected by local meteorological 

conditions 

 

A current global trend is a compact sensor solution (LI-710 from LI-COR) that allows the 

actual evapotranspiration from a given cover to be measured directly; the evaporation total is 

processed by the instrument itself (LI-710 Specifications, n.d.). The values can be read out 

from the measuring instrument or data logger without any additional calculation, providing 

data for the user every 30 minutes.  

Eddy Covariance applies to any relatively flat and uniform land cover at the scale of a field 

or an entire ecosystem (Järvi et al., 2018).  

 

Flux Towers 

Flux Towers (FT) are micrometeorological towers that analyse the interaction between the 

surface and lower layers of the atmosphere, enabling the long-term collection of field data 

(e.g., carbon, water or energy fluxes). However, as Ukkola et al. stated in 2021, their data are 

not always suitable for modelling due to varying data quality or data gaps. FT is also used as 

a source for reference or dditional data for EC (Gamon, 2015; Wiesner et al., 2022). 

FLUXNET Network (https://fluxnet.org/) is a global network of flux towers that 

aggregates smaller networks of EC towers into one dataset. Their products are available for 

download (https://fluxnet.org/data/fluxnet2015-dataset/); the last version of their data is 

FLUXNET2015 (Pastorello et al., 2020). 

 

Micrometeorological methods 

Methods based on monitoring physical environmental parameters (such as solar radiation, 

air and soil temperature and humidity, etc.) and subsequent calculation of meteorological 

indicators are suitable for the study of ET and other energy flows at the ecosystem level. 

They can be used to determine potential and actual evapotranspiration. 

https://fluxnet.org/
https://fluxnet.org/data/fluxnet2015-dataset/
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ET for large masses of land is difficult to determine and requires much testing and 

calibration of the models. Smaller, more locally-focused models were better for this task; 

however, because they are locally calibrated, they can give different results depending on the 

location (Alam et al., 2024). According to Hamed et al. (2022), the most used two types of 

classification are based on input data (temperature-based, radiation-based, mass transfer and 

combination methods) and their physicality (fully physically based combination models, 

semi-physically based combination models and black box models). To use an empirical 

model, one usually needs several types of meteorological data, and in the case of Remote 

Sensing, there are also several satellite images in various parts of the electromagnetic 

spectrum. 

 

Empirical and Combined models 

Empirical and combined methods use simple equations based on historical data and the 

area's specific conditions. The literature includes several groups of overlapping models 

(empirical, combined, radiation-based, and temperature-based).  

⚫ Benefits and advantages: 

⚫ Simplicity: Easy to use and does not require complicated equipment 

⚫ Speed: They allow quick estimates of evapotranspiration 

⚫ Limitations and disadvantages: 

⚫ Accuracy: They may be less accurate because they rely on empirical 

relationships that may not always accurately reflect actual conditions 

⚫ Limited applicability: They may need to be more suitable for specific or 

extreme conditions. 

 

Thornthwaite Method 

The Thornthwaite method was introduced in 1948 to determine PET (Thornthwaite, 1948). 

Based on empirical relationships between air temperature. This method is fairly easy to use 

since it requires only monthly mean air temperature. However, many factors (solar radiation, 

air humidity) are not considered at all, meaning it is often used in arid and semi-semi-arid 

areas and for drought indices applications (Aschonitis et al., 2021). 

 

Hargreaves and Samani Method 

Hargreaves and Samani Method (HS) is used to determine and is one of the methods 

recommended by FAO-56 (Allen et al., 1998; Hargreaves & Samani, 1982). HS is easy to use 

since only temperature and radiation data are needed. 

 

𝐸𝑇0 = 𝐾𝐸𝑇 × 𝑅𝐴 × (𝑇 + 17.8) × 𝑇𝐷0.5  (3) 

 

KET is the empirical coefficient defined by Hargreaves (Hargreaves & Samani, 1985) with 

a defined value of 0.0023. sands for extra-terrestrial radiation, and TD is the difference 

between maximum and minimum air temperature. Similarly to the Thornthwaite method, 

other climate factors, such as humidity or wind speed, are not considered (Jung et al., 2016). 

 

Priestley-Taylor 

The Priestley-Taylor (PT) model was made in 1972 and used to simplify the 

Penman-Monteith equation in case information regarding aerodynamic resistance is 

unavailable (Priestley & Taylor, 1972). This is solved by using the parameter of constant 

value (ɑ = 1.26), which was later redefined as a function of Vapour Pressure Deficit (VPD) 

by Steiner et al. in 1991. It refers to the Psychrometric Constant, which means latent heat of 
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vaporisation, is the slope of the saturation vapour pressure-temperature curve, and stands for 

Net Radiation and Ground Heat Flux. 

 

𝑃𝐸𝑇𝑃𝑇 =
1

𝜆
× 𝛿 ×

𝑅𝑛−𝐺

𝛿+𝛾
× 𝛼   (4) 

𝑉𝑃𝐷 = 1 + (𝛼 − 1) × 𝑉𝑃𝐷   (5) 

 

Due to using constant (not calibrating according to actual atmospheric conditions), PT 

often underestimates the amount of ET, making it also difficult to use in a spatial context 

(Tolk & Howell, 2006). It also shows both diurnal and annual fluctuation when applied to 

larger regions (de Bruin & Keijman, 1979). 

 

Penman-Monteith 

Penman-Monteith (PM) stands on the borderline, sometimes referred to as an empirical 

method and other times as a combined method. PM does not need local calibration for usage. 

However, it counts on several types of meteorological data, which can be hard to come by in 

certain regions. FAO recommends PM as a standard equation for calculating ET0 (Allen 

et al., 1998). Since PM sees the landscape as one object, we can also categorise it under 

one-source models (Zhang et al., 2016; Alam et al., 2024). During the late 1940s, Penman 

(Penman, 1948) devised an equation to compute evaporation from open water based on the 

amount of sun radiation, air temperature, air humidity and wind speed. Penman’s method 

was then extended by Monteith in 1965 into what is now known as the Penman-Monteith 

equation. Since 1990, the Penman-Monteith method has been recommended as a standard 

definition method (Allen et al., 1998). The basic Penman-Monteith equation was stated as 

follows; for a detailed explanation of the input variables, see Table 1. 

 

𝐸𝑇0 =
1

𝜆
×

𝛥×(𝑅𝑛−𝐺)×𝜌𝑎×𝑐𝑝×(
𝑒𝑠−𝑒𝑎
𝑟𝑎

)

𝛥+𝛾×(1+
𝑟𝑠
𝑟𝑎
)

   (6) 

 

Hydrological models 

These models often consist of mathematical relationships that allow for evapotranspiration 

calculation, often implemented in advanced models (e.g., SWAT -Soil and Water 

Assessment Tool, MIKE-SHE). Based on hydrological and landscape data, they simulate the 

entire water cycle in a catchment, including the evapotranspiration process (Zhao et al., 

2013). 

⚫ Benefits and advantages: 

⚫ Flexibility: applicable to various areas and meteorological conditions 

⚫ Low-cost: Relatively cheap to use and do not require physical devices. 

⚫ Limitations and disadvantages: 

⚫ Accuracy: Depends on input data quality and model calibration 

⚫ Complexity: Require expert knowledge for optimal setting and result 

interpretation  

 

 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=ET_0%20%3D%20%5Cfrac%7B1%7D%7B%5Clambda%7D%20%5Ctimes%20%5Cfrac%7B%5CDelta%20%5Ctimes%20(R_n%20-%20G)%20%5Ctimes%20%5Crho_a%20%5Ctimes%20c_p%20%5Ctimes%20(%5Cfrac%7Be_s%20-%20e_a%7D%7Br_a%7D)%7D%7B%5CDelta%20%2B%20%5Cgamma%20%5Ctimes%20(1%20%2B%20%5Cfrac%7Br_s%7D%7Br_a%7D)%7D#0
https://www.codecogs.com/eqnedit.php?latex=ET_0%20%3D%20%5Cfrac%7B1%7D%7B%5Clambda%7D%20%5Ctimes%20%5Cfrac%7B%5CDelta%20%5Ctimes%20(R_n%20-%20G)%20%5Ctimes%20%5Crho_a%20%5Ctimes%20c_p%20%5Ctimes%20(%5Cfrac%7Be_s%20-%20e_a%7D%7Br_a%7D)%7D%7B%5CDelta%20%2B%20%5Cgamma%20%5Ctimes%20(1%20%2B%20%5Cfrac%7Br_s%7D%7Br_a%7D)%7D#0
https://www.codecogs.com/eqnedit.php?latex=ET_0%20%3D%20%5Cfrac%7B1%7D%7B%5Clambda%7D%20%5Ctimes%20%5Cfrac%7B%5CDelta%20%5Ctimes%20(R_n%20-%20G)%20%5Ctimes%20%5Crho_a%20%5Ctimes%20c_p%20%5Ctimes%20(%5Cfrac%7Be_s%20-%20e_a%7D%7Br_a%7D)%7D%7B%5CDelta%20%2B%20%5Cgamma%20%5Ctimes%20(1%20%2B%20%5Cfrac%7Br_s%7D%7Br_a%7D)%7D#0
https://www.codecogs.com/eqnedit.php?latex=ET_0%20%3D%20%5Cfrac%7B1%7D%7B%5Clambda%7D%20%5Ctimes%20%5Cfrac%7B%5CDelta%20%5Ctimes%20(R_n%20-%20G)%20%5Ctimes%20%5Crho_a%20%5Ctimes%20c_p%20%5Ctimes%20(%5Cfrac%7Be_s%20-%20e_a%7D%7Br_a%7D)%7D%7B%5CDelta%20%2B%20%5Cgamma%20%5Ctimes%20(1%20%2B%20%5Cfrac%7Br_s%7D%7Br_a%7D)%7D#0
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Table 1: Explanation of PM variables 

Symbol Name Unit 

𝑅𝑛 Net Radiation W/m2 

𝐺 Soil Heat Flux W/m2 

𝑒𝑠 Saturated Vapour Air Pressure kPa 

ea Actual Vapour Air Pressure kPa 

𝜌𝑎 Air Density kg/m3 

cp Specific Heat of Air J/kg/˚C 

Δ Slope Saturation Vapour Pres. to Temp. kPa/˚C 

γ Psychrometric Constant kPa/˚C 

rs Surface Resistance s/m 

ra Aerodynamic Resistance s/m 

 

Surface Energy Balance Methods 

Surface Energy Balance/Budget (SEB) refers to methods focusing on energy and gas 

exchange between surface and atmosphere (Rahman & Zhang, 2019). The energy is divided 

into four crucial parts (see Fig. 3)—soil/Ground Heat Flux (G), representing heat absorbed or 

conducted by soil. Latent Heat Flux (LE) refers to the energy needed to transform liquid 

water into vapour without a change in temperature. Sensible Heat Flux (H) refers to heat 

transfer in turbulent convection (without state change of the substance).  
 

Fig. 3: Schema of surface energy balance using heat fluxes (Survey, n.d.) 
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These three fluxes are parts of the basic equation for calculating Net Solar Radiation. Net 

Solar Radiation (Rn) is a difference between incoming and outgoing solar radiation emitted 

by the surface. Studies focusing on daily or longer periods sometimes omit G (the soil 

quickly becomes saturated with heat, and the G value remains constant further on). However, 

this practice is not recommended (Sauer & Horton, 2005).   

Although SEB methods do not calculate ET directly, we can derive ET from the fluxes. ET 

can be derived from LE using (specific heat of vaporisation), representing the energy needed 

to vaporise water. Allen (1998) states a constant of 2.45 MJ/kg. 

 

Rn = G + H + LE   (7) 

 

Non-direct (Remote Sensing) Methods 

Remote Sensing is based on surface image acquisition, thus obtaining information about 

objects and phenomena without direct contact. The data obtained is repeatable, 

non-destructive and covers large areas simultaneously (DeFries, 2013). Due to the spatial 

nature of remote sensing, it captures the variability of different surfaces within a single image 

at the same moment. 

Using Remote Sensing in ET research has several important advantages. Unlike traditional 

or in-situ measurements, we can see large-scale areas much more easily since one satellite 

image of a heterogeneous area can cover hundreds of kilometres of ground. With 

long-running missions, we can create long-time series. An important aspect is that data 

recording is realised in a raster representation when one captured image is internally divided 

into image units - pixels.  

Additionally, long-term satellite missions enable the creation of extended time series, 

offering a broader perspective on landscape changes. Data is typically recorded in raster 

format, where the image is divided into pixels. Each pixel represents a homogeneous area, 

and calculations are performed at this per-pixel level (Khatami et al., 2017). 

Depending on the ground resolution of the acquired pixel, we can cover a large area and get 

detailed information about it (unlike ground observations, which usually cover only 

a specific point). Remote Sensing also helps estimate vegetation characteristics, such as 

vegetation indices and crop height, which are useful for validation and tracking land cover 

dynamics. A single image of a heterogeneous landscape can reveal multiple homogeneous 

areas, enabling precise evapotranspiration calculations and capturing variability within the 

landscape. 

Several satellite missions offer free or commercial data. With several satellite missions 

being open to the public, we can get satellite data covering the whole world (including the 

Czech Republic). An example of free-of-charge data can be the American Landsat system 

(8th and 9th generation satellites currently in operation), which provides data for the territory 

of the Czech Republic once every eight days using both Landsat 8 and Landsat 9 

(Landsat Science, 2021) which can be accessed manually or semi-automatically via Earth 

Explorer (https://earthexplorer.usgs.gov). This data can be processed in open-source GIS 

tools like QGIS. However, for all the advantages, it is also important to highlight such 

techniques' limitations. Optical data (necessary for this type of analysis) can be degraded by 

atmospheric conditions, especially cloud coverage (Baghdady et al., 2022). Sensor 

limitations and occasional hardware malfunctions are not impossible. Getting actual 

information from satellite data can be tricky since the data are published at different levels 

with different corrections (Aber et al., 2010). A certain limit may also pose the spatial 

resolution of the thermal band necessary for the calculation, which is often much coarser 

than other bands (for Landsat 8 and Landsat 9 thermal band is 100 m/pixel, while, e.g. Near 
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InfraRed is 30 m/pixel). However, the suitability largely depends on the study's details. 

However, there are also commercial alternatives with a more detailed resolution. 

 

Satellite-Based SEB Models for Evapotranspiration Estimation 

Satellite-based SEB (Surface Energy Balance) models are widely used to estimate 

evapotranspiration by combining satellite imagery with meteorological data. These models 

help estimate the energy exchanges between the surface and the atmosphere. Three 

commonly used models are SEBAL, SEBS, and S-SEBI, each with different approaches and 

(dis)advantages. 

SEBAL (Surface Energy Balance Algorithm for Land) is one of the first 

evapotranspiration models based on SEB principles. Its main advantages include estimating 

ET over large areas without requiring extensive ground data. However, it requires 

site-specific calibration, which can be challenging (Bastiaanssen et al., 1998). 

SEBS (Surface Energy Balance System), developed by Su (2002), builds on SEBAL’s 

principles but adds complexity by incorporating additional meteorological data, including 

surface temperature, albedo, and heat fluxes. SEBS provides more detailed calculations of 

heat fluxes (H, G, and LE) but requires more input data than SEBAL. 

S-SEBI (Roerink et al., 2000) are simpler models that result in information about LE. They 

rely mostly on satellite-measured data but may incorporate additional meteorological data. 

Compared to SEBAL and SEBS, S-SEBI is easier to apply but generally less accurate (Wagle 

et al., 2017). While SEBAL is useful for large-scale applications, SEBS provides more 

accurate heat flux measurements, and S-SEBI is a trade-off between ease of use and 

precision. 

In conclusion, SEBAL, SEBS, and S-SEBI offer valuable tools for estimating 

evapotranspiration (ET) from satellite data. Each model has its own strengths and 

weaknesses, making them suitable for different applications. SEBAL is well-suited for 

large-scale ET estimation with minimal ground data, while SEBS provides more accurate 

heat flux calculations but requires more input data. S-SEBI offers a balance between 

simplicity and accuracy, making it a good choice for simpler applications or when data 

limitations exist. By carefully considering the specific research objectives and available 

resources, researchers can select the most appropriate model for their ET estimation needs. 

However, many other individual models are widely used around the world. The OpenET 

project (Melton et al., 2021b), with a spatial resolution of 30 meters, was created in the 

western United States to help agriculture with water management. The project uses six 

models: ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop. The 

input satellite data for the models are primarily Landsat TM/ETM+/OLI imagery 

supplemented by Sentinel-2 and MODIS products. The MODIS sensor replaced the newer 

VIIRS sensor in 2011 but remains fully operational until 2025. The accuracy of OpenET 

data, evaluated against ground-based measurements, demonstrated a remarkably high degree 

of accuracy in cropland regions (Volk et al., 2024), instilling confidence in the reliability of 

the data. In a study by Bajgain et al. (2020b), MODIS ET data products at varying spatial 

resolutions were compared with eddy covariance-measured ET (ETEC). All products 

demonstrated an underestimation of ET relative to ETEC; however, the most accurate 

product was MODET30, which has a resolution of 30 metres. Other approaches use 

a combination of multiple data sources. The study conducted by Guzinski et al. (2020) 

utilises imagery from Sentinel-2 and Sentinel-3 satellites. This combination presented 

challenges due to the disparate spatial resolutions, as Sentinel-3 provides land surface 

temperature (LST) imaging at a spatial resolution of 1 km. At the same time, Sentinel-2 

offers a spatial resolution of 20 metres, necessitating resampling. The research compared 
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three thermal-based remote sensing ET models: METRIC, ESVEP, and TSEB-PT. Among 

these, TSEB-PT yielded the most robust results across different land cover types, with the 

highest accuracy observed in agricultural areas. New approaches are also being developed to 

detect ET, such as the optical trapezoid model OPTRAM-ET (Mokhtari et al., 2023). 

Compared to LST-VI, the model does not require thermal data and relies solely on optical 

bands from Sentinel-2 or Landsat 8. The model has been successful in estimating ET in 

agricultural and orchard areas. Its performance was similar to LST- VI, but it provides higher 

spatial and temporal resolution. 

 

 

FUTURE OF EVAPOTRANSPIRATION RESEARCH 

Over several decades, technology and scientific applications have significantly advanced, 

not only in the collection but also in evapotranspiration. In 2015, Pereira et al. (2015) 

published an article regarding the past and future of (primarily). His article predicts wider 

usage of geographical information systems and related fields, such as Remote Sensing, which 

will turn towards scripting and automatization (mainly in Python or Java-like applications). 

In recent years, the popularity of soft computing has drastically increased. The term refers 

to computers being able to work on cognitive tasks without human assistance. Soft 

computing is a general term for applying machine learning methods, deep learning, or 

artificial neural networks. Since the introduction of observing satellites, large quantities of 

data have been acquired in various formats. These extensive data volumes can be effectively 

analysed using highly accurate soft computing methods. The literature shows that artificial 

neural networks are much better and more accurate in deriving information about 

evapotranspiration, especially about, and often outperforming the traditional methods (Alam 

et al., 2024; Elbeltagi et al., 2022; Wanniarachchi & Sarukkalige, 2022). New ways of 

predicting and analyzing ET has been done using genetic algorithms. Kiraga et al. in 2023 

used four machine learning models with reference lysimeter measurements, in this case the 

Penman-Monteith model was also outperformed. According to Pagano et al. (2023), these 

results can generally be further improved by information about soil water content and 

vegetation indices. The importance of water content was also declared by Babaeian et al. 

(2022). Their model was able to predict ET between satellite overpasses, thereby enabled 

them to improve the temporal resolution of the satellite mission. 

Recently, the vertical structure of vegetation has also been reflected in the calculation of 

ET, or the cooling function of vegetation (Makarieva & Gorshkov, 2007; Sheil, 2018). This is 

due to the development of non-contact image technologies, especially LIDAR, supplemented 

by AI tools, which enable the automated determination of individual stand structures and the 

calculation of individual densitometric (DBH) parameters. This will subsequently make it 

possible to determine in great detail the shape, spatial configuration and volume of the green 

part of the trees (crown), which is responsible for transpiration processes (Zhang et al., 

2023). 

A deeper understanding of interactions between surface and atmosphere is also needed due 

to he seemingly inevitable change of global climate and consequences of human activities. 

ET is often used as one of the main links between energy and water balance. Since it is both 

affected by water availability and air temperature (Kirschbaum, 2004), it can show us future 

projections for freshwater presence and availability under changing conditions. However, 

there is no linear dependency between rising air temperature or the amount of available water 

and ET (Hamouda et al., 2021). According to Hamouda (2020), more complex approaches to 
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assess the relationship between these two variables are known, although more needs to be 

tested. 

 

 

CONCLUSIONS 

The article gives an overview of the principles of determining ET. Direct methods using 

lysimeters and flux towers offer the most precise data but are expensive and limited in 

covering large areas (especially in spatial analyses). Empirical or combined models, such as 

the Thornthwaite method, use available weather data but may require calibration and have 

limitations under specific conditions. Combined models (Penman-Monteith) can incorporate 

more detailed data on plants, soil, and atmosphere for a more comprehensive picture. 

However, they require extensive data inputs, which may only sometimes be available. 

Finally, remote sensing with satellites provides large-scale coverage but can be affected by 

factors like cloud cover and complex data processing. 

In contrast, remote sensing offers a compelling solution. It provides large-scale coverage, 

overcoming the limitations of traditional field methods. While factors like cloud cover and 

complex data processing can affect its effectiveness, advancements are being made to 

address these challenges. 

The future of ET research shows advancements in data fusion techniques that integrate 

information from multiple sources, including remote sensing data. Machine learning and 

artificial intelligence can also be used for data analysis and ET estimation methods. 

Moreover, a deeper understanding of complex natural processes and how climate change 

impacts ET rates will be crucial for future research. This knowledge, particularly when 

combined with the advantages of remote sensing, is essential for effective water resource 

management across vast areas. 
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ABBREVIATIONS 

ALEXI/DisALEXI Disaggregation of the Atmosphere-Land Exchange Inverse 

eeMETRIC  Mapping Evapotranspiration at High Resolution with Internalized Calibration 

geeSEBAL  Surface Energy Balance Algorithm for Land using Google Earth Engine  

SIMS  A Simple Remote Sensing EvapoTranspiration Model  

OPTRAM-ET  Optical Trapezoid Model for Evapotranspiration  

VIIRS  Visible Infrared Imaging Radiometer Suite 

ETEC  Evapotranspiration by Eddy Covariance 

LST-VI  Land Surface Temperature by Vegetation Indices 

PT-JPL  Priestley-Taylor Jet Propulsion Laboratory 

SWAT  Soil and Water Assessment Tool 

PT    Pristley-Taylor 

SIMS  Satellite Irrigation Management Support 

SSEBop  Operational Simplified Surface Energy Balance  

ET    Evapotranspiration 

PET    Potential Evapotranspiration 

ET0    Reference Evapotranspiration 

AE    Actual Evapotranspiration 

LAI    Leaf Area Index 

TD    Air Temperature Difference 

FAO   Food and Agriculture Organization 

PM    Penman-Monteith 

HS    Hargreaves and Samani 

SEB    Surface Energy Balance 

G    Ground Heat Flux 

LE    Latent Heat Flux 

Rn    Net Radiation 

M    Molecular Heat Flux 

SEBAL  Surface Energy Balance Algorithm for Land 

SEBS  Surface Energy Balance System 

SEBI  Surface Energy Balance Index 

S-SEBI  Simplified Surface Energy Balance Index 

MODIS  Moderate Resolution Imaging Spectroradiometer 

TM    Thematic Mapper 

ETM+  Enhances Thematic Mapper 

OLI    Operational Land Imager 

METRIC  Mapping EvapoTranspiration at high Resolution with Internalized  

Calibration 

LST    Land Surface Temperature 

ESVEP  Soil and Vegetation Energy Partitioning 

TSEB  Two-source Surface Energy Balance 

EC    Eddy Covariance 

LIDAR  Light Detection and Ranging 

AI    Artificial Intelligence 

DBH  individual densitometric parameters 

   FT   Flux Tower 
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